Monday, 11 May 2015

Explain the features, characteristics and an application of one type of AC GENERATOR

The AC Generators are devices that change the mechanic power to AC electric power by magnetic coal rotary on inside a copper wires causing generating electrical power.
An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines. An alternator that uses a permanent magnet for its magnetic field is called a magneto. Alternators in power stations driven by steam turbines are called turbo-alternators.
Principle
A conductor moving relative to a magnetic field develops an electromotive force, (Faraday's Law). This EMF (Electromotive force) reverses its polarity when it moves under magnetic poles of opposite polarity. Typically, a rotating magnet, called the rotor turns within a stationary set of conductors wound in coils on an iron core, called the stator. The field cuts across the conductors, generating an induced EMF (electromotive force), as the mechanical input causes the rotor to turn.
The rotating magnetic field induces an AC voltage in the stator windings. Since the currents in the stator windings vary in step with the position of the rotor, an alternator is a synchronous generator.

Characteristics
Alternators are rated according to the voltage they are designed to produce and the maximum current they are capable of providing. The maximum current that can be supplied by an alternator depends upon the maximum heating loss that can be sustained in the armature. This heating loss acts to heat the conductors, and if excessive, destroys the insulation. Thus, alternators are rated in terms of this current and in terms of the voltage output the alternator rating in small units is in volt amperes; in large units it is kilovolt-amperes.
When an alternator leaves the factory, it is already destined to do a very specific job. The speed at which it is designed to rotate, the voltage it will produce, the current limits, and other operating characteristics are built in. This information is usually stamped on a nameplate on the case so that the user will know the limitations.

No comments:

Post a Comment